翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

coadjoint representation : ウィキペディア英語版
coadjoint representation
In mathematics, the coadjoint representation K of a Lie group G is the dual of the adjoint representation. If \mathfrak denotes the Lie algebra of G, the corresponding action of G on \mathfrak^
*, the dual space to \mathfrak, is called the coadjoint action. A geometrical interpretation is as the action by left-translation on the space of right-invariant 1-forms on G.
The importance of the coadjoint representation was emphasised by work of Alexandre Kirillov, who showed that for nilpotent Lie groups G a basic role in their representation theory is played by coadjoint orbit.
In the Kirillov method of orbits, representations of G are constructed geometrically starting from the coadjoint orbits. In some sense those play a substitute role for the conjugacy classes of G, which again may be complicated, while the orbits are relatively tractable.
==Formal definition==
Let G be a Lie group and \mathfrak be its Lie algebra. Let \mathrm : G \rightarrow \mathrm(\mathfrak) denote the adjoint representation of G. Then the coadjoint representation K : G \rightarrow \mathrm(\mathfrak^
*) is defined as \mathrm^
*(g^) := \mathrm(g^)^
*. More explicitly,
:\langle K(g)F, Y \rangle = \langle F, \mathrm(g^)Y \rangle for g \in G, Y \in \mathfrak, F \in \mathfrak^
*,
where \langle F, Y \rangle denotes the value of a linear functional F on a vector Y.
Let K_ denote the representation of the Lie algebra \mathfrak on \mathfrak^
* induced by the coadjoint representation of the Lie group G. Then for X \in \mathfrak, K_(X) = -\mathrm(X)^
* where \mathrm is the adjoint representation of the Lie algebra \mathfrak. One may make this observation from the infinitesimal version of the defining equation for K above, which is as follows :
:\langle K_(X)F, Y \rangle = \langle F, - \mathrm(X)Y \rangle for X, Y \in \mathfrak, F \in \mathfrak^
*. .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「coadjoint representation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.